VGP393C - Week 7

v Agenda:

— Common multi-threading problems
- Dead-lock / live-lock
— Priority inversion
- Thread-safe libraries
— Cache abuse / memory bandwidth

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Deadlock

v Deadlock occurs when forward progress is
halted because every task Is waiting for some
other task to complete some action

— Requires that all four of these conditions be met:

Access to each resource Is exclusive

A task is allowed to acquire one resource while already
holding another

No task is willing / able to release a resource that it has
acquired

There Is a cycle of tasks trying to acquire resources
Each resource is held by one task but is requested by another

/

,“x

/
F Y
~

"“1

."
/fi\ u r? August-2008
\

© Copyright lan D. Romanick 2008

Deadlock

> Allow non-exclusive access to resources
— Data replication
— Non-blocking algorithms
- etc.

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Deadlock

» Break the cycle of tasks
— Require that tasks acquire resources in a particular
order
— QOrder resources by name / ID

— Order resources by sequence in data structure (list, tree,
etc.)

— Order resources by memory address of the resource
- etc.

/’/\ C \
/) i > -
/ I \\{ 27-August-2008
//i \ © Copyright lan D. Romanick 2008

o)

Deadlock

2> Allow tasks to release resources when deadlock
IS possible

— If a second resource cannot be acquired in a
reasonable time, release the first resource

voild acquire_lock(lock *L1, lock *L2)
{
bool L1 _held = true;
for (unsigned i = base_timeout; /* empty */ ; 1 *= 2) {
if (!L1_held)
acquire (L1l);

1if (try_acquire (L2, 1))
break;

release (L1);
Ll held = false;
}

}
A ¢
/ \\LS ;}
\\ r?-August-zoos
_ \

f

//i © Copyright lan D. Romanick 2008

Live-lock

» No task makes progress though all tasks are
doing something
- In the previous example, two tasks in lock-step would
repeatedly:
— Try to acquire a second resource
— Release the first resource
— Re-acquire the first resource
— Lather, rinse, repeat

— Usually fixed by randomizing timeouts or adding a
priority scheme

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Live-lock

void acquire_lock(lock *L1, lock *L2)
{
bool L1 _held = true;
for (unsigned i = base_timeout; /* empty */ ; 1 *= 2) {
if (!Ll_held)
acquire (L1);

unsigned try_timeout = random_value (base_timeout, 1i);
if (try_acquire (L2, try_timeout))
break;

release (L1);
Ll held = false;

/ Q\ ’\T/ 27-August-2008
\ © Copyright lan D. Romanick 2008

Priority Inversion

» Imagine you have three threads:

— Low priority thread: gathers meteorological data
- Runs infrequently for a short period of time
— Accesses a shared data structure via a mutex

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Priority Inversion

» Imagine you have three threads:

— Low priority thread: gathers meteorological data
- Runs infrequently for a short period of time
— Accesses a shared data structure via a mutex

— Medium priority thread: performs communications
- May run for a long period of time

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Priority Inversion

» Imagine you have three threads:

— Low priority thread: gathers meteorological data
- Runs infrequently for a short period of time
— Accesses a shared data structure via a mutex

— Medium priority thread: performs communications
- May run for a long period of time
— High priority thread: performs important system
management activities
— This thread runs frequently

— If this thread is unable to run for a long period of time, the
system assumes it has crashed and reboots

i o o
\—’; Access same shared data as the low priority thread
//\ p) \‘;:.,.f;
= \\[LZ?-August-zoog

)

© Copyright lan D. Romanick 2008

Called a watchdog ti

merJ

Priority Inversion

» The system usually runs just fine, but...
- Every now and then, it randomly reboots
— These reboots are traced to the watchdog timer
- What happened?

S

A ¢
B
f:\ [r? August-2008

© Copyright lan D. Romanick 2008

Priority Inversion

» The system usually runs just fine, but...
- Every now and then, it randomly reboots
— These reboots are traced to the watchdog timer
- What happened?

» Classic priority inversion!
— Low priority thread acquires the mutex

— Medium priority thread starts running and preempts
the low priority thread

— High priority thread needs to run
— Can't acquire mutex because it is held by another thread

//(\—C}ow priority thread can't release the mutex because the
1L T

/0 medigsregsiority thread is running
AN

’f
y |

pr: N

© Copyright lan D. Romanick 2008

o)

Priority Inversion

2 Does this sound contrived?

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Priority Inversion

2 Does this sound contrived?

- Maybe, but it this is exactly what happened to the
Mars Pathfinder in 1997*

! http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
A ¢

// 3 Lé-«%

) 7 \{ r?-August-zoos

© Copyright lan D. Romanick 2008

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

Priority Inversion

v Priority inversion occurs when “a low priority task
holds a shared resource that Is required by a
high priority task....execution of the high priority
task [is] blocked until the low priority task has re-
leased the resource, effectively “inverting” the
relative priorities of the two tasks."”

! http://en.wikipedia.org/wiki/Priority_inversion

e

s [27-August-2008
\ © Copyright lan D. Romanick 2008

http://en.wikipedia.org/wiki/Priority_inversion

Priority Inversion

» Three common solutions to priority inversion

— Disable interrupts / task switching during critical
sections

— Priority inheritance
— Priority cellings

f/\ / \
/\) B //
w,\ [r? August-2008

© Copyright lan D. Romanick 2008

/

"“1

Priority Inversion

» Disable interrupts / multitasking during critical
sections

— Since a task cannot be interrupted while holding a
lock, it will run to completion and release the lock

— A higher priority thread cannot prevent a lower priority
thread from finishing up with a mutex

— Only one thread can run at a time with a mutex held,
so deadlock is prevented single processor systems

— Not very practical:
- Can't disable multitasking on desktop / server OSs!

— Limits scalability

//

/\ \ — boesnt help on mU|t|prOCessor SyStemS
L, ¢ Y [LZ? August-2008
\

\

/(© Copyright lan D. Romanick 2008

P -

/

Priority Inversion

v Priority inheritance

— A thread holding a lock temporarily inherits the priority
of the highest priority thread requesting the lock

— If a higher priority thread needs to run, the lower

priority thread holding the lock is guaranteed to be
scheduled so that it can finish

— This is how the Mars Pathfinder team solved their priority in-
version problem

f/\ / \
/\) B //
w,\ [r? August-2008

© Copyright lan D. Romanick 2008

"“1

Priority Inversion

> Priority ceiling
— Each mutex has an associated priority

— Called the “celling,” it Is the highest priority of any thread
expected to ever hold the mutex

- When a thread acquires a mutex, Its priority IS
bumped to that of the mutex

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Thread-Safe Libraries

v A thread-safe library function can be called
concurrently by multiple library clients (threads)

S

A ¢
B
f:\ [r? August-2008

© Copyright lan D. Romanick 2008

/

Thread-Safe Libraries

> Consider the C library function fprint£:

— Processes the format and parameters, and writes
characters to the specified file

— The FILE structure contains a low-level OS file
handle and a buffer

— File 1/0O writes to the buffer and flushes it to the file when full

» What happens if multiple threads call a non-
thread-safe fprint £ concurrently?

- Chaos

f/\ / \
/\) B //
w,\ [r? August-2008

© Copyright lan D. Romanick 2008

"“1

Thread-Safe Libraries

> Consider the C library function st rtok:

char *strtok (char *str, const char *delim);

— Partitions st r into “tokens” separated by characters
IN delim

— First call sets st r, which is stored in hidden storage

- Following calls pass NULL to get successive tokens from the
same string

— Usually happens in a loop

> What happens if multiple threads call st rtok
concurrently?

Iy = _4

p—_

) o \\{ 27-August-2008
(\ © Copyright lan D. Romanick 2008

Thread-Safe Libraries

Y strtok is just plain broken:

- Uses hidden data that is shared across calls to the
function

— A simple mutex in the function doesn't solve the problem

» Two ways to fix:

— Add an explicit “state” parameter
— strtok_r does just that

- The _r In names of standard C library functions means re-
entrant

- Use thread-local storage

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Thread-Safe Libraries

v Interface conventions to follow:
— Data used across calls should be passed In
— Caller provides synchronization on objects passed-in
— Different from the fprint £ case!

— Library function provides synchronization on global
data

- Provides thread-safety when called concurrently on different
objects

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Thread-Safe Libraries

» Why force the caller to provide synchronization
on objects passed-in?

- Imagine a linked list class that provides thread-safe
pop and is_empty methods:

node = list.pop();

if (list.is_empty () {
} foo(); Race condition!
— Explicit synchronization is required anyway
— Implicit synchronization inside the methods becomes
wasted overhead
4)
,z\i\,éf//

g [27-August-2008
\ © Copyright lan D.

Romanick 2008

Thread-Safe Libraries

v System libraries usually have thread-safe and
non-thread-safe versions

- In VisualStudio, /MD (or /MDd) selects the thread-safe
versions

— Some Interfaces are just plain broken, and these are
typically documented a non-thread-safe

— This can sometimes be worked around by using your own
mutex

/’/\ ‘/*\}
/ \‘—’S,_/;
/f;\‘\ 4 [i LZ?-August-2008
)

© Copyright lan D. Romanick 2008

Break

/V:\\ ’\'r/ 27-August-2008
\ © Copyright lan D. Romanick 2008

Cache

» Two primary cause of decreased cache
performance

- Working set too large

— Causes memory-to-cache data movement and cache-to-
memory data movement

— Data sharing

— Causes pI’OceSSOI‘-tO-pI‘OCESSOI’ data movement
- l.e., from one CPU's cache to another CPU's cache

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

/

//i © Copyright lan D. Romanick 2008

Py

Cache

» CPUs have data alignment rules

— Usually, data must be aligned to a multiple of its size
— Results in holes or padding in structures

struct foo {
char c;
int 1;
short s; S
double d;

bi

&
/ \ig)

g [27-August-2008
\ \ © Copyright lan D. Romanick 2008

Cache

» CPUs have data alignment rules

— Usually, data must be aligned to a multiple of its size
— Results in holes or padding in structures
— Qrdering structure members by size fixes this

struct foo {

double d; d

int 1;

short s; 1

char c; s c
¥

— Now the whole structure fits in a single 16-byte cache-
line!
AN

4

/ ‘)
4 \‘_7>_/;
/ f:“\ \[27-August-2008
{ \ \

© Copyright lan D. Romanick 2008

Cache

» Keeping data in the cache improves
performance
— Decrease the size of the working set be compacting
the data
— Use smaller data types
- Improve alignment to compact structures

— QOperate on a window of a larger data set

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Cache

int strike(bool *composite, int i, int

stride, int limit)

for (/* empty */; i <= limit; i += stride)
composite[i] = true;
return 1i;
}
int sieve (int n)
{
int count = 0;
int m = (int) sqgqrt ((double) n);
bool *const composite = new bool[n + 1];

(void) memset (composite, 0, sizeof(bool) * (n + 1));

for (int i = 2; 1 <= m; 1i++) {
if (!composite[i]) {
count++;

strike (composite, 2 * 1,
}
}
for (int i = m + 1; 1 <= n; 1i++)
if (!composite[i]) count++;

p }

! ’/ Z= 0
/ offed: composite;

- c
AR M[bﬁ&dlg%%tczoos

.

\

/ (\

)

/

© Copyright lan D. Romanick 2008

If n Is larger than the cache size,
strike will thrash the cache

Cache

int sieve_cache_friendly (int n)

{

int count = 0O;
int m = (int) sqgrt ((double) n);
bool *const composite = new bool[n + 1];
| * —) . . .
S TEeEEen = e e [l g m iS much smaller than n, and is
int *striker = new 1nt[m]; —
int n_factor = 0; more Ilkely to fit in the cache
(void) memset (composite, 0, sizeof(bool) * (n + 1)),
for (int 1 = 2; 1 <= m; 1i++)
if (!composite[i]) {
count++;
striker[n_factor] = strike(composite, 2 * i, i, m); -
factor[n_factor] = 1i;
factor++;
}
for (int window = m + 1; window <= n; window += m) {
const int limit = min(window + m - 1, n);
for (int k = 0; k < n_factor; k++) {
striker[k] = strike (composite, striker[k], factor[k], limit); -4—
for (int 1 = window; 1 <= limit; 1i++)
if (!composite[i]) count++;

‘%73%%B2§i£%f delete factor; delete striker;
urn count;
© Copyright lan D. Romanick 2008

Cache

» Certain memory access patterns cause memory
contention, which results in processor-processor
transfers

— Read-write — One processor writes a cache line,
another processor reads it

- Write-write — One processor writes a cache line,
another processor writes it

- Read-read — No contention In this case

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Cache

int sieve_cache_friendly (int n)

{

int count = 0O;
int m = (int) sqgrt ((double) n);
bool *const composite = new bool[n + 1];
int *factor = new int[m];
) X) . : . .
b femeor TSt AnEImL Use loop parallelism here —
(void) memset (composite, 0, sizeof(bool) * (n + 1)),
for (int 1 = 2; 1 <= m; 1i++)
if (!composite[i]) {
count++;
striker[n_factor] = strike (composite, 2 * i, 1, m);
factor[n_factor] = 1i;
factor++;
}

for (int window = m + 1; window <= n; window += m) {
const int limit = min(window + m — 1, n);
for (int k = 0; k < n_factor; k++) {

striker[k] = strike (composite, striker([k], factorlk],
for (int 1 = window; 1 <= limit,; i++)
1f (!composite[i]) count++;
4B
/
Q@\ gg n7§§%@g§iﬁﬁ delete factor; delete striker;
u u

© Copyright lan D. Romanick 2008

limit);

-

Cache

» Fix contention using known patterns:

— Let read-only memory be shared
— Fill factor once and let all threads share it

— (Generate output to task-local buffers when possible
— Each task has a private sub-range of composite

— Each task has a private striker

- Eliminate the loop-carried dependency by recalculating the first ele-
ment of striker

— Use reductions when possible
— Calculate count per-task, reduce at the end

27-August-2008
© Copyright lan D. Romanick 2008

Cache

» Cache line granularity is not usually the same as
data item granularity

-~ The count reduction array has a 4-byte granularity,

but the L1 cache line granularity on a Core 2 Duo is
64-bytes

— If two processors access separate data items that
happen to reside in the same cache line there will be
memory contention

— This is called false sharing

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

/
F Y
~

© Copyright lan D. Romanick 2008

"“1

Cache

v Fix false sharing by doing cache line granular
data partitioning
— Partition distributed arrays a cache line boundaries
— Pad elements of reduction arrays to the cache line
Size
— Allocate per-task data at cache line boundaries
» Need to know the size of a cache line!

- Need a memory allocator that can allocate memory at
arbitrary alignments
— Search for “aligned malloc”

y ;/,\ \\{ 27 -August-2008
\ © Copyright lan D. Romanick 2008

Next week...

» No class next week
— Next class meeting is Wednesday 9/10
- SIMD
- Quiz #3
— WIll cover material from week 5 and week 6
— WIll not cover material from this week!

- Assignment #3 due
— Start assighment #4

/’/\ / \

//\ SRS > A

;/,\ 4 r? August-2008
\

,“x

// © Copyright lan D. Romanick 2008

"“1

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

y”
/
f/f:“\ ij\'r/terugust-zoos
)

© Copyright lan D. Romanick 2008

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

