
© Copyright Ian D. Romanick 2008

27-August-2008

VGP393C – Week 7

⇨ Agenda:
 Common multi-threading problems

 Dead-lock / live-lock
 Priority inversion
 Thread-safe libraries
 Cache abuse / memory bandwidth

© Copyright Ian D. Romanick 2008

27-August-2008

Deadlock

⇨ Deadlock occurs when forward progress is
halted because every task is waiting for some
other task to complete some action

 Requires that all four of these conditions be met:
 Access to each resource is exclusive
 A task is allowed to acquire one resource while already

holding another
 No task is willing / able to release a resource that it has

acquired
 There is a cycle of tasks trying to acquire resources

 Each resource is held by one task but is requested by another

© Copyright Ian D. Romanick 2008

27-August-2008

Deadlock

⇨ Allow non-exclusive access to resources
 Data replication
 Non-blocking algorithms
 etc.

© Copyright Ian D. Romanick 2008

27-August-2008

Deadlock

⇨ Break the cycle of tasks
 Require that tasks acquire resources in a particular

order
 Order resources by name / ID
 Order resources by sequence in data structure (list, tree,

etc.)
 Order resources by memory address of the resource
 etc.

© Copyright Ian D. Romanick 2008

27-August-2008

Deadlock

⇨ Allow tasks to release resources when deadlock
is possible

 If a second resource cannot be acquired in a
reasonable time, release the first resource

void acquire_lock(lock *L1, lock *L2)
{
 bool L1_held = true;
 for (unsigned i = base_timeout; /* empty */ ; i *= 2) {
 if (!L1_held)
 acquire(L1);

 if (try_acquire(L2, i))
 break;

 release(L1);
 L1_held = false;
 }
}

© Copyright Ian D. Romanick 2008

27-August-2008

Live-lock

⇨ No task makes progress though all tasks are
doing something

 In the previous example, two tasks in lock-step would
repeatedly:

 Try to acquire a second resource
 Release the first resource
 Re-acquire the first resource
 Lather, rinse, repeat

 Usually fixed by randomizing timeouts or adding a
priority scheme

© Copyright Ian D. Romanick 2008

27-August-2008

Live-lock

void acquire_lock(lock *L1, lock *L2)
{
 bool L1_held = true;
 for (unsigned i = base_timeout; /* empty */ ; i *= 2) {
 if (!L1_held)
 acquire(L1);

 unsigned try_timeout = random_value(base_timeout, i);
 if (try_acquire(L2, try_timeout))
 break;

 release(L1);
 L1_held = false;
 }
}

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Imagine you have three threads:
 Low priority thread: gathers meteorological data

 Runs infrequently for a short period of time
 Accesses a shared data structure via a mutex

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Imagine you have three threads:
 Low priority thread: gathers meteorological data

 Runs infrequently for a short period of time
 Accesses a shared data structure via a mutex

 Medium priority thread: performs communications
 May run for a long period of time

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Imagine you have three threads:
 Low priority thread: gathers meteorological data

 Runs infrequently for a short period of time
 Accesses a shared data structure via a mutex

 Medium priority thread: performs communications
 May run for a long period of time

 High priority thread: performs important system
management activities

 This thread runs frequently
 If this thread is unable to run for a long period of time, the

system assumes it has crashed and reboots
 Access same shared data as the low priority thread

Called a watchdog timer

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ The system usually runs just fine, but...
 Every now and then, it randomly reboots
 These reboots are traced to the watchdog timer
 What happened?

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ The system usually runs just fine, but...
 Every now and then, it randomly reboots
 These reboots are traced to the watchdog timer
 What happened?

⇨ Classic priority inversion!
 Low priority thread acquires the mutex
 Medium priority thread starts running and preempts

the low priority thread
 High priority thread needs to run

 Can't acquire mutex because it is held by another thread
 Low priority thread can't release the mutex because the

medium priority thread is running

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Does this sound contrived?

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Does this sound contrived?
 Maybe, but it this is exactly what happened to the

Mars Pathfinder in 19971

1 http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Priority inversion occurs when “a low priority task
holds a shared resource that is required by a
high priority task....execution of the high priority
task [is] blocked until the low priority task has re-
leased the resource, effectively “inverting” the
relative priorities of the two tasks.1”

1 http://en.wikipedia.org/wiki/Priority_inversion

http://en.wikipedia.org/wiki/Priority_inversion

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Three common solutions to priority inversion
 Disable interrupts / task switching during critical

sections
 Priority inheritance
 Priority ceilings

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Disable interrupts / multitasking during critical
sections

 Since a task cannot be interrupted while holding a
lock, it will run to completion and release the lock

 A higher priority thread cannot prevent a lower priority
thread from finishing up with a mutex

 Only one thread can run at a time with a mutex held,
so deadlock is prevented single processor systems

 Not very practical:
 Can't disable multitasking on desktop / server OSs!
 Limits scalability
 Doesn't help on multiprocessor systems

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Priority inheritance
 A thread holding a lock temporarily inherits the priority

of the highest priority thread requesting the lock
 If a higher priority thread needs to run, the lower

priority thread holding the lock is guaranteed to be
scheduled so that it can finish

 This is how the Mars Pathfinder team solved their priority in-
version problem

© Copyright Ian D. Romanick 2008

27-August-2008

Priority Inversion

⇨ Priority ceiling
 Each mutex has an associated priority

 Called the “ceiling,” it is the highest priority of any thread
expected to ever hold the mutex

 When a thread acquires a mutex, its priority is
bumped to that of the mutex

© Copyright Ian D. Romanick 2008

27-August-2008

Thread-Safe Libraries

⇨ A thread-safe library function can be called
concurrently by multiple library clients (threads)

© Copyright Ian D. Romanick 2008

27-August-2008

Thread-Safe Libraries

⇨ Consider the C library function fprintf:
 Processes the format and parameters, and writes

characters to the specified file
 The FILE structure contains a low-level OS file

handle and a buffer
 File I/O writes to the buffer and flushes it to the file when full

⇨ What happens if multiple threads call a non-
thread-safe fprintf concurrently?

 Chaos

© Copyright Ian D. Romanick 2008

27-August-2008

Thread-Safe Libraries

⇨ Consider the C library function strtok:
char *strtok(char *str, const char *delim);

 Partitions str into “tokens” separated by characters
in delim

 First call sets str, which is stored in hidden storage
 Following calls pass NULL to get successive tokens from the

same string
 Usually happens in a loop

⇨ What happens if multiple threads call strtok
concurrently?

 Chaos

© Copyright Ian D. Romanick 2008

27-August-2008

Thread-Safe Libraries

⇨ strtok is just plain broken:
 Uses hidden data that is shared across calls to the

function
 A simple mutex in the function doesn't solve the problem

⇨ Two ways to fix:
 Add an explicit “state” parameter

 strtok_r does just that

 The _r in names of standard C library functions means re-
entrant

 Use thread-local storage

© Copyright Ian D. Romanick 2008

27-August-2008

Thread-Safe Libraries

⇨ Interface conventions to follow:
 Data used across calls should be passed in
 Caller provides synchronization on objects passed-in

 Different from the fprintf case!

 Library function provides synchronization on global
data

 Provides thread-safety when called concurrently on different
objects

© Copyright Ian D. Romanick 2008

27-August-2008

Thread-Safe Libraries

⇨ Why force the caller to provide synchronization
on objects passed-in?

 Imagine a linked list class that provides thread-safe
pop and is_empty methods:

node = list.pop();
if (list.is_empty()) {
 foo();
}

 Explicit synchronization is required anyway
 Implicit synchronization inside the methods becomes

wasted overhead

Race condition!

© Copyright Ian D. Romanick 2008

27-August-2008

Thread-Safe Libraries

⇨ System libraries usually have thread-safe and
non-thread-safe versions

 In VisualStudio, /MD (or /MDd) selects the thread-safe
versions

 Some interfaces are just plain broken, and these are
typically documented a non-thread-safe

 This can sometimes be worked around by using your own
mutex

© Copyright Ian D. Romanick 2008

27-August-2008

Break

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ Two primary cause of decreased cache
performance

 Working set too large
 Causes memory-to-cache data movement and cache-to-

memory data movement

 Data sharing
 Causes processor-to-processor data movement

 i.e., from one CPU's cache to another CPU's cache

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ CPUs have data alignment rules
 Usually, data must be aligned to a multiple of its size
 Results in holes or padding in structures

struct foo {
 char c;
 int i;
 short s;
 double d;
};

c

i

s

d

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ CPUs have data alignment rules
 Usually, data must be aligned to a multiple of its size
 Results in holes or padding in structures
 Ordering structure members by size fixes this

struct foo {
 double d;
 int i;
 short s;
 char c;
};

c

i

s

d

 Now the whole structure fits in a single 16-byte cache-
line!

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ Keeping data in the cache improves
performance

 Decrease the size of the working set be compacting
the data

 Use smaller data types
 Improve alignment to compact structures

 Operate on a window of a larger data set

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

int strike(bool *composite, int i, int stride, int limit)
{
 for (/* empty */; i <= limit; i += stride)
 composite[i] = true;
 return i;
}

int sieve(int n)
{
 int count = 0;
 int m = (int) sqrt((double) n);
 bool *const composite = new bool[n + 1];

 (void) memset(composite, 0, sizeof(bool) * (n + 1));
 for (int i = 2; i <= m; i++) {
 if (!composite[i]) {
 count++;
 strike(composite, 2 * i, i, n);
 }
 }
 for (int i = m + 1; i <= n; i++) {
 if (!composite[i]) count++;
 }
 delete composite;
 return count;
}

If n is larger than the cache size,
strike will thrash the cache

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

int sieve_cache_friendly(int n)
{
 int count = 0;
 int m = (int) sqrt((double) n);
 bool *const composite = new bool[n + 1];
 int *factor = new int[m];
 int *striker = new int[m];
 int n_factor = 0;
 (void) memset(composite, 0, sizeof(bool) * (n + 1));
 for (int i = 2; i <= m; i++)
 if (!composite[i]) {
 count++;
 striker[n_factor] = strike(composite, 2 * i, i, m);
 factor[n_factor] = i;
 factor++;
 }
 for (int window = m + 1; window <= n; window += m) {
 const int limit = min(window + m – 1, n);
 for (int k = 0; k < n_factor; k++) {
 striker[k] = strike(composite, striker[k], factor[k], limit);
 for (int i = window; i <= limit; i++)
 if (!composite[i]) count++;
 }
 }
 delete composite; delete factor; delete striker;
 return count;
}

m is much smaller than n, and is
more likely to fit in the cache

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ Certain memory access patterns cause memory
contention, which results in processor-processor
transfers

 Read-write – One processor writes a cache line,
another processor reads it

 Write-write – One processor writes a cache line,
another processor writes it

 Read-read – No contention in this case

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

int sieve_cache_friendly(int n)
{
 int count = 0;
 int m = (int) sqrt((double) n);
 bool *const composite = new bool[n + 1];
 int *factor = new int[m];
 int *striker = new int[m];
 int n_factor = 0;
 (void) memset(composite, 0, sizeof(bool) * (n + 1));
 for (int i = 2; i <= m; i++)
 if (!composite[i]) {
 count++;
 striker[n_factor] = strike(composite, 2 * i, i, m);
 factor[n_factor] = i;
 factor++;
 }
 for (int window = m + 1; window <= n; window += m) {
 const int limit = min(window + m – 1, n);
 for (int k = 0; k < n_factor; k++) {
 striker[k] = strike(composite, striker[k], factor[k], limit);
 for (int i = window; i <= limit; i++)
 if (!composite[i]) count++;
 }
 }
 delete composite; delete factor; delete striker;
 return count;
}

Use loop parallelism here

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ Fix contention using known patterns:
 Let read-only memory be shared

 Fill factor once and let all threads share it

 Generate output to task-local buffers when possible
 Each task has a private sub-range of composite

 Each task has a private striker
 Eliminate the loop-carried dependency by recalculating the first ele-

ment of striker

 Use reductions when possible
 Calculate count per-task, reduce at the end

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ Cache line granularity is not usually the same as
data item granularity

 The count reduction array has a 4-byte granularity,
but the L1 cache line granularity on a Core 2 Duo is
64-bytes

 If two processors access separate data items that
happen to reside in the same cache line there will be
memory contention

 This is called false sharing

© Copyright Ian D. Romanick 2008

27-August-2008

Cache

⇨ Fix false sharing by doing cache line granular
data partitioning

 Partition distributed arrays a cache line boundaries
 Pad elements of reduction arrays to the cache line

size
 Allocate per-task data at cache line boundaries

⇨ Need to know the size of a cache line!
 Need a memory allocator that can allocate memory at

arbitrary alignments
 Search for “aligned malloc”

© Copyright Ian D. Romanick 2008

27-August-2008

Next week...

⇨ No class next week
 Next class meeting is Wednesday 9/10
 SIMD
 Quiz #3

 Will cover material from week 5 and week 6
 Will not cover material from this week!

 Assignment #3 due
 Start assignment #4

© Copyright Ian D. Romanick 2008

27-August-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

